General Heart Construction on a Triangulated Category (I): Unifying t-Structures and Cluster Tilting Subcategories
نویسنده
چکیده
In the paper of Keller and Reiten, it was shown that the quotient of a triangulated category (with some conditions) by a cluster tilting subcategory becomes an abelian category. After that, Koenig and Zhu showed in detail, how the abelian structure is given on this quotient category, in a more abstract setting. On the other hand, as is well known since 1980s, the heart of any tstructure is abelian. We unify these two construction by using the notion of a cotorsion pair. To any cotorsion pair in a triangulated category, we can naturally associate an abelian category, which gives back each of the above two abelian categories, when the cotorsion pair comes from a cluster tilting subcategory, or is a t-structure, respectively.
منابع مشابه
T-structures and torsion pairs in a 2-Calabi-Yau triangulated category
For a Calabi-Yau triangulated category C of Calabi-Yau dimension d with a d−cluster tilting subcategory T , the decomposition of C is determined by the decomposition of T satisfying ”vanishing condition” of negative extension groups, namely, C = ⊕i∈ICi, where Ci, i ∈ I are triangulated subcategories, if and only if T = ⊕i∈ITi, where Ti, i ∈ I are subcategories with HomC(Ti[t],T j) = 0,∀1 ≤ t ≤ ...
متن کاملCluster Tilting vs. Weak Cluster Tilting in Dynkin Type a Infinity
This paper shows a new phenomenon in higher cluster tilting theory. For each positive integer d, we exhibit a triangulated category C with the following properties. On one hand, the d-cluster tilting subcategories of C have very simple mutation behaviour: Each indecomposable object has exactly d mutations. On the other hand, the weakly d-cluster tilting subcategories of C which lack functorial ...
متن کاملOn the Relation between Cluster and Classical Tilting
Let D be a triangulated category with a cluster tilting subcategory U . The quotient category D/U is abelian; suppose that it has finite global dimension. We show that projection from D to D/U sends cluster tilting subcategories of D to support tilting subcategories of D/U , and that, in turn, support tilting subcategories of D/U can be lifted uniquely to weak cluster tilting subcategories of D.
متن کاملIntermediate Co-t-structures, Two-term Silting Objects, Τ-tilting Modules, and Torsion Classes
If (A,B) and (A′,B′) are co-t-structures of a triangulated category, then (A′,B′) is called intermediate if A ⊆ A′ ⊆ ΣA. Our main results show that intermediate co-t-structures are in bijection with two-term silting subcategories, and also with support τ -tilting subcategories under some assumptions. We also show that support τ -tilting subcategories are in bijection with certain finitely gener...
متن کاملAN INTRODUCTION TO HIGHER CLUSTER CATEGORIES
In this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. We focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of Fomin and Reading, and colored quiver mutation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 19 شماره
صفحات -
تاریخ انتشار 2011